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Abstract

Search engines targeting content other than hy-
pertext documents require a crawler that discov-
ers resources identifying files of certain media
types. Naive crawling approaches do not guaran-
tee a sufficient supply of new URIs (Uniform Re-
source Identifiers) to visit; effective and scalable
mechanisms for discovering and crawling tar-
geted resources are needed. One promising ap-
proach is to use data mining techniques to iden-
tify the media type of a resource without the need
for downloading the content of the resource. The
idea is to use a learning approach on features
derived from patterns occuring in the resource
identifier. We present a focused crawler as a use
case for fast and scalable data mining and dis-
cuss classification and pattern mining techniques
suited for selecting resources satisfying specified
media types. We show that we can process an av-
erage of 17,000 URIs/second and still detect the
media type of resources with a precision of more
than 80% and a recall of over 65% for all media

types.

1 Introduction

The number of search engines focused on specific top-
ics has increased significantly over recent years. Besides
search engines focused on (hyper)text documents, spe-
cialised search engines are available online which collect
and integrate information from files of particular media
types. Seeqpod [URL, j] and Blinkx [URL, g] offer search
over audio and video files, Google Scholar [URL, b] and
CiteSeer [URL, a] are digital libraries of printable docu-
ments, Technorati [URL, d] provides real-time access to
news-feeds, and Seekda [URL, c] offers search capabilities
for web services. A common issue for all vertical search
engines is the challenge of discovering and downloading
the targeted files on the Web. Specifically, the challenge
of detecting documents of a certain media type without in-
specting the content is still not solved [Lausen and Hasel-
wanter, 2007]. For this task, a URI-only classifier is a good
choice, because speed is crucial and content filtering should
be enabled before an (objectionable) web page is down-
loaded. Basically, a focused crawler ([Chakrabarti et al.,
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1999]) wants to infer the topic of a target page before de-
voting bandwidth to download it. Further, a page’s content
may be hidden in images.

A crawler for media type targeted search engines is fo-
cused on the document formats (such as audio and video)
instead of the topic covered by the documents. For a scal-
able media type focused crawler it is absolutely essential
to discover documents of the requested media type on the
Web and to avoid expensive HTTP lookups of irrelevant
files. Thus, the crawler needs to identify the media type of
a document without establishing a connection and down-
loading the content. A common way to identify the format
of a file is to use the file extension of the file name or to
detect characteristic byte patterns in the file content itself
(magic number approach), which does not scale well. The
latter approach is not suitable because it requires to retrieve
the data which is expensive and time consuming task. We
can conclude that the file extension is only for some media
types suitable as an identifier based on a study of 22M Web
documents [Umbrich et al., 2008] in 2008.

We propose to use classification or pattern mining tech-
niques to discover Web documents of requested media
types without analysing the content. For this, we utilise
information available for a crawler during the crawling pro-
cess to classify and filter URIs for pre-defined media types.
Note that learning patterns without analysing the content of
files can be applied in other scenarios as well, e.g., in genre
classification. We present general data mining approaches
suited for this task, discuss their strengths and weaknesses,
and, based on first experiences, present a classifier-based
solution. As this method still comes with several disadvan-
tages, we further propose to apply frequent pattern min-
ing approaches as an alternative. Here we focus on stream
mining approaches, as they provide a fast and scalable solu-
tion that is perfectly suited for the long-running and input-
intensive task of a Web crawler.

The remainder of the paper is organised as follows: In
Section 2 we briefly present the basics of a crawler focus-
ing on media-types and discuss general data mining ap-
proaches suited for this. Section 3 presents first experi-
ences that we gained using implementations available in the
WEKA toolkit. Based on these experiences, we propose a
classifier approach in Section 4 and discuss an improve-
ment based on pattern stream mining. Section 5 contains
an evaluation of the classifier approach. Finally, Section 6
briefly presents related work and Section 7 concludes the

paper.



2 Data Mining for Focused Crawling

The principle of a crawler is to start with a set of seed
URIs and to recursively follow the discovered links. For
this, crawlers follow, for instance, a breadth-first or depth-
first approach. This means, the crawler changes domains
through the crawling job and may be returning to domains
already visited before. A focused crawler tries to follow
only links to pages and files of a specific type — in our case
the media type of files.

Our basic idea is to utilise the information available for
a crawling during the crawl loop to identify the media-type
of Web resources without inspecting the content itself. The
accessible information sources for a crawler are [Umbrich
et al., 2008]:

1. the URI
2. the link position of the URI in the HTML document
3. the information sent with the HTTP response header

However, in this work we exclusively focus only on the
mining of features contained in the URI. URIs are also
used for topic classification [Baykan et al., 2009]. Media
types are registered with their related RFC description with
TANA [URL, h]. The RFC description contains a general
explanation of the purpose of the media type and also rec-
ommendation for the file extension(s) to use when publish-
ing a document. A media type consists of two parts, 1) the
content—-type and 2) the sub—-type, separated by “/”
(content-type/sub-type). To explain our thoughts
we introduce an example URI' referring to a W3C Video
on the Web Workshop in 2007.

2.1 URI

Every network-retrievable document has a Uniform Re-
source Identifier (URI) as defined in RFC2396 [URL, il,
which specifies that a URI consists of five components.

[PROTOCOL):/[[HOST):[PORT)/[PATH][FILE]?[QUERY]

Please note that we focus exclusively on the Hypertext
Transfer Protocol (HTTP) and omit the other protocols,
such as the File Transfer Protocol (FTP, RFC 959 [URL,
f]) or the gopher protocol (RFC 1436 [URL, e]). The sin-
gle parts have the following meanings:

e The PROTOCOL specifies the transfer protocol used
to access the resource on the Internet.

e The HOST part refers to the domain name of the web
server.

e The PORT component depends on factors such as
server-side firewall settings, proxy configuration or
router settings. If the PORT component is omitted,
the standard assumes the default HTTP port 80.

e The PATH and FILE components can be created either
automatically, for example by a content management
system, or manually by human users.

The PATH component can be part of a hierarchical folder
structure. Users organise their content in a folder structure,
such as storing images in an image directory or videos in
a video sub folder. In this case, special sub folders can be
used as an indicator for the media types of the documents
in this folder. Our URI example has the FILE component
Angio.avi with file extension avi, which is mapped to

"http://www.w3.0rg/2007/08/video/slides/KidsHealth/Angio.avi

the media type video/x-msvideo. The mapped me-
dia type matches with the real media type of our example.
The QUERY component is a string of information to be in-
terpreted by the resource and is omitted here. We use the
following notation for the URI components in this paper:

E for the file extension of the FILE component

F for the filename

the single tokens in the PATH components are labeled
with T

the HOST part is labeled with D

2.2 Classification

We can map our media-type identification problem to a
classification task. Based on a set of predefined media
types, we want to classify a URI to its real media type.
Therefore, we have to split the components of a URI into
a feature set that serves as the input for the classification
algorithm. Possible classification algorithms for this task
could be one of the following: The Bayesian classifier
shows convincing results for classifying text. Most spam
detection applications use a Bayesian classifier to decide
whether or not a text snippet or an email is spam? [Sahami
et al., 1998]. The support vector machines (SVM) al-
gorithm is also used for focused web crawling [Sizov et
al., 2002] and achieved reasonably good results in classi-
fying documents to topics. The C4.5. algorithm gener-
ates a pruned or unpruned decision tree [Quinlan, 1993]
[Quinlan, 1996]. A common Bayesian network classifica-
tion algorithm [Pearl, 1985] is also featured. Noteworthy, it
is proven that a classification algorithm based on decision
trees and word tokens from anchor text can significantly
improve focused crawling [Li er al., 2005]. Hence, we do
not know how it performs for the classification task based
on a small set of features.

Some disadvantages come along with the classification
approach. If we use a supervised algorithm we need to gen-
erate a training set. Given that there exist over 200 different
media types on the Web and that 80% of the documents are
text/html documents, we have the problem of gathering a
training set with representative candidates. Another impor-
tant fact is the dynamic and heterogeneous nature of the
Web. Different domains use different URI patterns for the
same media type documents. The classifier could be opti-
mised especially for some certain domains, depending on
the training set of selected URIs. Such a domain specific
classifier could achieve a very good classification precision
for certain URIs, but the classifier will “fail” for URIs of
domains that are not in the training set.

This static approach is not suitable without retraining the
classifier during the crawl. This is especially an issue in
the context of changing domains, where already visited do-
mains may be visited later on again. Also, the training and
testing tasks could be very time consuming in the context
the Web crawling application. We will show that in the next
section.

2.3 Dynamic Pattern Mining

A very promising approach is the mining of patterns from
URIs to identify the media type of the underlying docu-
ment. Especially stream pattern mining seems to be a good
solution. We will discuss the stream mining approach in
more detail in Section 4. The basic idea is to mine frequent

“http://www.paulgraham.com/Spam.html



Content type || Classifier Max precision | Features

application/* 748 95.24% DTFE
audio/* Bayes 94.09% TE
image/* sSmo 100.00% E
text/* smo 91.03% DTFE
video/* || Bayesnet 56.96% TE

Table 1: Selected results for the best classifier & feature
combination with the highest precision for each tested con-
tent types.

patterns from a set of URIs and their real media types.
Based on these association patterns we can learn rules and
use them to identify the media types. With pattern stream
mining approaches we can discover new patterns over the
time the crawler traverses the Web. This approach can also
keep up with new appearing media types and does not rely
on a predefined and static set of media types.

3 First Experiences

First, we wanted to know if a classification approach is
suited for our needs at all. We used the WEKA toolkit to
gain first knowledge if patterns extracted from URIs are
suitable for a media type classification. Based on the possi-
ble features of a URI, we tested and compared four differ-
ent classification algorithms provided by the WEKA frame-
work. The evaluation contains the results of all possible
permutations of classifier and feature combination for me-
dia types and content types. However, we present here only
selected results out of 19 test runs. The evaluation shows
precision and recall values as well as detailed results of the
time needed to train and test the classifiers. Further, we
studied the scalability of the WEKA library and the pro-
vided implementations.

3.1 Feature Combinations

The test for possible feature combinations contains the fol-
lowing four feature combinations: E, FE, TFE, DTFE.
They were chosen intuitively in order to get a first impres-
sion of the suitability of the approach. We observed that
there exists no clear feature combination that in general
achieves the highest precision and recall values. In 9 out
of 19 tests the feature combination DTFE (domain, tokens,
file name and file extension) achieved the best precision.
Another objective fact is that there exists no single classifi-
cation algorithm that clearly outperforms the others. Table
1 shows the summary of the classifiers that have the highest
precision to identify documents for the tested media types.
12 out of 19 classifier algorithms uses the Bayesian theory.
The Bayes classifier achieves in 8 out of 19 cases the best
precision value and the Bayesian net algorithm in another
4 cases. The complete list of the results® and more details
are provided in [Umbrich, 2008].

3.2 Scalability

We stopped the execution time to train and test a cer-
tain WEKA classifier after a number of input instances.
The benchmarks are performed for all possible combina-
tions of classifiers and feature patterns for the content type
application with a dictionary containing 5,000 words.
The results are for the feature combination DFTE. Figure 1
shows the time to generate the WEKA input (ARFF) file,

3http://www.umbrich.net/pubs/master _thesis.pdf

Figure 2 shows the result to train the algorithms and Fig-
ure 3 the results to test the trained classifiers. The ma-
jor problem and scalability limitation of the WEKA work-
bench is that all the information that is needed to train a
classifier and finally to classify new instances are kept in
memory. Thus, the limitation of WEKA is the available in-
memory space. With the naive Bayes classifier the memory
limit was reached with a dictionary containing 20,000 to-
kens. Another reason why we believe that WEKA is not
suitable for a scalable architecture is the bad time perfor-
mance to classify a list of URIs. Results show that the av-
erage classification speed is 47.5 URIs/seconds. Under the
assumption that the system filters millions of URIs, the cur-
rent implementation with the WEKA libraries is not appli-
cable. The time to create the required ARFF file increases
exponentially with the number of instances, as the results
in Figure 1 show.

Time needed to create a WEKA ARFF format for different feature patterns
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Figure 1: Elapsed time to generate the WEKA ARFF input
format.
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Figure 2: Elapsed time to train a WEKA classifier for each
feature combination.

The conclusion of this first evaluation is that the pro-
vided JAVA implementations of WEKA have memory lim-
itations. For our Web crawler application, the classifiers
cannot keep up with the performance of URIs/sec supplied
by the crawler.

4 Approach

From the tested classification algorithms, the Bayesian
classifier was the most suitable, in terms of used mem-
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Figure 3: Elapsed time to test a WEKA classifier for each
feature combination.

ory and the performance of the learning and classification
task. Thus, we propose a statistical classifier similar to
the a priori approach of the Bayesian algorithm or “One-

Item-Rule” of an association rule algorithm [Agrawal ez al.,
1993].

HTTP DataStream
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Figure 4: Media type crawl filter architecture

The general idea is illustrated in Figure 4. A knowledge
base holds the data to generate files required to build and
evaluate new classifiers. Furthermore, the knowledge base
analyses the inserted information and generates meta data
about, for example, the distribution of media types, the oc-
currence of feature values and the appearance of features
together with media types. These meta data are used for a
statistical approach to determine the media type of a URI.

An evaluation function calculates a conditional probabil-
ity of being a media type mt, given the features extracted
from URI uri. In the current version, we implemented a
media type filter that supports a statistical classifier. This
is an algorithm similar to association rule mining, which
is fed by background knowledge from the meta data of the
data store component. Next, we will describe the algorithm
of the proposed statistical classifier in detail.

4.1 Statistical Classifier

The statistical classifier calculates the relevance score
based on the conditional probability with the function of
the Bayesian theory,

P(ANB) _|ANB

PAIB) = =5 = 15

The classifier scans the meta information of the data store
to select the best features to identify the media types and
stores the selected features in an internal cache. The most
precise features are selected with an algorithm similar to
the a priori association rule mining algorithm [Agrawal et
al., 1993; Agrawal and Srikant, 1994]. The “One-Item-
Rule”(A = B) algorithm selects single features which are
associated with a “goal” or class like .jpg = image/ jpeg.
The best features are selected based on the confidence value

conf(a—b) = W
with
__#
sup() = #total

The formula for calculating the confidence is equivalent to
the conditional probability formula, which calculates the
probability of some event A, given the occurrence of some
other event B. Conditional probability is written

P(AUB)
P(B)
and is read “’the probability of A, given B”.
The algorithm is not a full association rule algorithm and

skips the rule detection for all possible feature combina-
tion. Instead, our algorithm uses the mapping function

P(A|B) =

II(uri, featurePattern) = featureString

to generate all possible combination of features for given
and pre-defined combination patterns.

A combination pattern is a series of single features, such
as the combinations of DT, that is, all possible combination
of the pair <pld+token>.

We use a true Bayesian estimate to calculate the impor-
tance of a rule based on the value of the conditional proba-
bility and the occurrence of the feature in our data store.

Bayesian Estimate The formula for calculating the
weighted score for a “feature rule” gives a true Bayesian
estimate:

x C

X R+

v
w feature =
v+ v+m

where R denotes probability for the feature, v the number
of total occurrence of the feature, m the minimum occur-
rence required to be added to the rule set and C' the default
probability. This equation is adapted from the weighted
rank of movies at IMDB*.

The media type filter is the core component of our
crawling framework to guide the crawler while travers-
ing the Web for new documents of requested media
types. With this component, the framework can perform
a crawling strategy which is equal to a dynamical heuris-
tic search algorithm. The media type filter integrates
the mapping function II(uri) with an evaluation function
f(uri, II(uri)). The background knowledge used to cal-
culate the relevance score of URIs can be updated during
the crawl runtime and thus, the filter can learn new fea-
tures to discover relevant documents. The mapping func-
tion I(uri) = {TLD(uri), T (uri), N(uri), E(uri)} ex-
tracts features from a URI and generates a feature vector
that is used as input for the evaluation function. The evalu-
ation function returns the conditional probability that a URI

*http://www.imdb.com/



is of media type mt, or expressed in terms of the probabil-
ity theory f(mt,(uri)) = P(mtluri). With the rele-
vance score from the evaluation function, the component
filters a list of URIs and adds selected URIs to a single pri-
ority queue or a set of priority queues. The background
knowledge of this component contains pairs of URIs with
their real media types. The post-processing component de-
tects the real media type of downloaded files and adds this
knowledge into the media-type filter.

Filter rules control which pages are visited next and
which URIs are ignored. The crawling behavior can be
controlled with the following rules:

o (mt,min_prob) = ALLOW Allow/Select URIs
with a probability of more than min_prob for media
type mt.

o (mt,min_prob) = DISALLOW Disallow/Filter
out URIs with a probability of more than min_prob
for media type mt.

We are aware that the presented approach of a statistical
classifier does not allow to easily change patterns or learn
new media types. Obviously, an unsupervised approach
that can mine the occurring patterns would be more prac-
tical. Hence, we discuss a pattern mining approach in the
next section.

4.2 Pattern Tree Approaches

As we highlighted, the limitations of the presented ap-
proach are:

1. feature patterns are static and pre-defined

2. more feature pattern combinations require more in-
memory space

3. new discovered media types cannot be added to the
classifier

We found a promising approach using frequent pattern
trees [Han et al., 2000] and an extension to mine frequent
itemsets in streams under dynamically changing resource
constraints [Franke et al., 2006]. Especially, the latter work
fulfills our requirements. Franke et. al provide a framework
to mine frequent itemsets, either from fixed size intervals
or from time intervals. The algorithm is resource-aware,
which means it can be adjusted to changing resources and
it can be run with fixed allocated resources. This approach
has the following advantages:

1. automatic detection of new patterns

2. assurance of a constant memory footprint independent
from the crawling time or the number of processed
URIs.

3. new discovered media types can be added to the clas-
sifier

Using a stream-based approach promises that the per-
formance requirements of a Web crawler can be met with-
out problems. The crawler produces a high input rate for
the mining task (up to thousands of inserts per minute) and
runs for days to weeks. Thus, we are running continuous
mining queries on a continuous stream of high input rate.
That is exactly what stream mining algorithms are devel-
oped for, as they usually aim for needing only one look on
each date. Another advantage is the possibility to query for
frequent itemsets from certain time intervals. If the crawler
records at which time he enters or leaves a domain, it is
straightforward to determine patterns from only that do-
main. In future work we plan to evaluate what is the better

choice, either use all patterns learned so far or just focus on
domain-specific ones. The algorithm from [Franke er al.,
2006] provides a perfect basis for that, which is accompa-
nied by its resource awareness. Moreover, the algorithm
can always provide guarantees on the achieved quality, de-
pending on the currently used resources.

Meanwhile, we implemented the pattern mining ap-
proach. The next steps are to fully integrate it into the
crawling framework. When this is done, we can measure
the overall performance of this method and compare it to
the static classifier approach. We expect similar perfor-
mance, due to the stream character of the used solution.
Concerning accuracy and applicability, we expect even bet-
ter results, due to the dynamic and unsupervised features of
the approach.

5 Evaluation

In this section, we present the methods and results of our
evaluation of the statistical classifier. We measured the pre-
cision and recall of our implementation and further, the per-
formance with respect to the requirements of a Web crawler
use-case. We measured the discovery ratio of requested
media types on the Web based on a base-line crawl with a
breadth-first crawling strategy. First, we present the eval-
uation setup and used methods, followed by the results of
the single evaluations steps. Finally, we provide a detailed
discussion of the results.

5.1 Setup

All experiments are performed on a single Opteron 2.2
GHz CPU with 4 GB of main memory and two SATA
(160GB,750GB) disks. We used a published and represen-
tative web corpus containing 22.2M documents [Umbrich
et al., 2008]. The test corpus contains 3.8M external links
from ODP? and 6.4m external links from Wikipedia® in De-
cember 2007.

We use data from this combined corpus to evaluate the
approach of our statistical classifier. We focus on the DTFE
feature combination, as this has been proven to be the gen-
erally most suited one in our WEKA tests. The underlying
assumption for this test is that as soon as the conditional
probability of a feature is greater than 0.5 (=50%), we can
assume a positive match. The classifier evaluates first the
file extension of the URI, second the single path tokens and
third, the combination of the top-level-domain and the path
tokens. If all features cause a relevance value of less than
0.5, we will assume a false match.

Our test set contains 4.28 M detected media types and is
split into eight folds, fold A, B, C, D, E, F, G and H. The last
fold (H with 285396 entries) is used to evaluate and test the
classifier. The first seven folds (A-G), containing 500.000
entries, are used to train and update the statistical classifier.
We ran seven evaluation rounds for each of the five con-
tent types (application, audio, image, text and
video). The classifier is updated by one of the remaining
data set parts and tested against the separate data set H in
each round. The internal cache of the classifier was set up
with 5000 entries for each feature and with the thresholds
0.5 and 0.7. All features that have a conditional probability
less than the threshold are deleted.

Shttp://rdf.dmoz.org/rdf/content.rdf.u8.gz
Shttp://download.wikimedia.org/enwiki/



5.2 Results

First, we list the precision and recall values from the evalu-
ation. Second, we show the benchmarks to mine and clas-
sify new URIs. Table 2 list the precision and recall values
for two thresholds and the five content types.

Rounds
a b c d e f g
application/«
Threshold 0.5

Pr 8524 8534 86.21 85.93 86.05 85.84  85.67
Re 6656 6737 6754 67.68 6750 6746 6747
Threshold 0.7
Pr: 9198 9196 9334 93.10 9322 93.04 93.13
Re: 6650 6844 6648 6538 6534 6532 6532

audio/*

Threshold 0.5

Pr: 87.88  86.14  86.57 86.57 84.88  86.57 84.69
Re: 84.88 84.83 84.88 84.88  84.88 84.883  86.34
Threshold 0.7

Pr: 9158 9158 91.10 91.10 91.10 91.10 91.10
Re: 84.88  84.88 84.88 84.88  84.88 84.88  84.88

image/*

Threshold 0.5

Pr: 8489 84.05 83.50 8296 8337 8353 8323
Re: 9831 98.43  98.64 98.64 98.66 98.66  98.68
Threshold 0.7

Pr: 87.84  87.81 8790 87.74 87.89 87.60 87.66
Re:  98.11 98.25 9837 9846 9852 9850  98.50

text/«*

Threshold 0.5

Pr: 7368 7378  73.81 74.00 7394 7397  73.99
Re: 9978  99.77 99.74  99.73  99.74  99.75  99.74
Threshold 0.7

Pr: 8674 8726 8747 8885 88.71 8877  88.83
Re: 6136 61.07 61.01 60.06 60.16 5991  59.90

video/*

Threshold 0.5

Pr: 7273 7273  71.11 7273 7111 71.11 71.11
Re: 9143 9143 9143 9143 9143 9143 9143
Threshold 0.7

Pr: 81.48 81.48 74.42 81.48 74.42 74.42 74.42
Re: 6286 6286 9143 6286 9143 9143 9143

all values are percentages.

Table 2: Precision and recall of the statistical classifier for
different thresholds.

Scalability We benchmarked the implementation of the
statistical classifier to measure the time to insert/update and
classify a list of URIs. Figure 5 shows results. Our imple-
mentation shows a linear increase of the elapsed time with
the number of URIs for both operations.

Focused Crawling for Media Types We evaluate the ap-
plicability of our approach in a media-type focused Web
crawler based on the following use case: Documents of
content type audio, video or image are requested to
build a multimedia search engine. The detailed setup of
this experiment is as follows: We started with a seed set
of twelve URIs, collected from the social bookmark page
Delicious’. The requested documents cannot be used to ex-
tract new links, thus we selected also links to text /html
documents. To measure the efficiency of the pattern min-
ing approach we compared three typical crawling strate-
gies. As our base-line we performed a breadth-first crawl.
The second strategy is a focused crawl (best-first) using
the statistical classifier without a cut-off threshold to omit

http://delicious.com/
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Figure 5: Performance of the statistical classifier.

URIs. We prioritised URIs based on their conditional prob-
ability that they are of a requested media type. The filter
methods first selects all URIs which are of content type
audio,video or image and adds the selected URIs to
the queue. In a second processing step URIs of media type
text /html are selected and forwarded to the queue. The
third strategy applies a fixed size queue of 10K URIs and
a URI-per-domain limit of 10. The results of the different
strategies are presented in Figure 6.
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Figure 6: Performance of different crawl strategies.

5.3 Discussion

Next, we will discuss the results presented in the previous
section. Because of space limitations we refer to a more
detailed discussion of the results in [Umbrich, 2008].

Precision and Recall Table 2 lists the detailed results for
the classification evaluation. First of all, we can observe
that for all tested content-types the precision values
are higher than 75% and the recall values above 60% . The
predefined feature patterns achieve reasonable good results.
However, we observe that the recall values for video/ *
and threshold 0.7 differ between 60% and 90%. This dif-
ference is caused by the pre-defined and static feature pat-



terns and boosts our idea to use the frequent pattern tree
approach.

Furthermore, we observe an increase of the precision by
nearly 9% if the internal cache threshold of the classifier
is changed from 0.5 ( = 50%) to 0.7 (=70%). To revive,
features with a conditional probability less than the internal
cache threshold for a certain content or media type are not
recorded and used for the classification. With this threshold
we can control the characteristics of the statistical classifier.
A higher threshold results in a higher precision and a lower
threshold increases the recall.

Comparing the precision of the statistical classifier with
the achieved classification precisions of the WEKA classi-
fiers we notice very promising results. Beside the precision
values for the classification of documents of content type
image, the statistical classification approach achieves pre-
cision values that are only around 2% less than the WEKA
classifiers, with still reasonable good recall values for the
content types application, audio, text and video.

As expected, the classifier approach achieves very good
values for precision and recall. This shows that the ap-
proach of choosing data mining techniques to identify me-
dia types without checking file content is very suitable and
applicable. The next interesting step is to evaluate the dy-
namic pattern mining approach, which promises to be even
better suited, due to its streaming and unsupervised charac-
ter.

Fast and Scalable The processing speed of the current
implementation of the statistical classifier is in average
17,385 URlIs/second for filtering URIs and in average 3,000
URIs/second for inserts and updates of new obtained in-
formation. The performance clearly outperforms the pro-
cessing speed of the WEKA classifiers. For filtering single
URIs our implementation is 319 times faster than the algo-
rithm using the WEKA classifiers and 15 times faster com-
pared to the best achievable processing speed of WEKA
(generating an ARFF input file with all URIs = 200
URlIs/sec). The performance for training the classifier is in
average 27 times faster then the best possible performance
of the WEKA implementation (110 URIs/second for the
Bayesian classifier) for the same feature combinations.

The evaluation of the focused crawling strategy imple-
mented in the current version of our crawler shows that
the crawler continuously gathers the requested documents
of content types image, audio and video with the
breadth-first crawling strategy. The gradient of the number
of fetched relevant documents depends only on the avail-
able requested documents in the crawl queue. We can see
that the gradient of the curve varies over time and is not
constant. Depending on the URIs in the queue, the crawler
extracts new links for a fraction of HTML documents that
contain more relevant documents as the HTML document
in the round before or reverse.

The curve of the nidive breadth-first-crawl strategy shows
a step function. This clearly shows the filtering and priori-
tising of URIs leading to relevant documents. In the very
beginning of the crawl (<50,000 HTTP lookups) the num-
ber of the downloaded relevant documents is zero and then,
suddenly, it significantly increases. The explanation for
this is that the media-type filter is untrained in the begin-
ning and cannot apply any background knowledge. With
more and more visited documents and more obtained in-
formation of URIs and their belonging media types, the fil-
ter component discovers convenient feature patterns and is

capable to identify and filter relevant documents.

The results show that even the a priori method used in
combination with a focused crawler can meet the perfor-
mance requirements of today’s Web crawlers. However,
performance of Web crawlers can never be good enough, as
they usually represent extremely long-running tasks. That
is why the stream-based pattern mining approach promises
to be a very good choice. We expect it to at least meet the
performance we gained in the evaluation presented here, if
not even to be capable of producing better results.

6 Related Work

To the best of our knowledge, we are not aware of pub-
lished work that focuses on the topics of focused crawling
for certain media types beside the work of Bachlechner et.
al. [Bachlechner et al., 20061, which tries to gather “Web
Service Description Language® (WSDL) files on the web.
However, the work in hand focuses on the applicability and
scalability of different data mining approaches for this task.
[Baykan et al., 2009] showed that patterns in URIs can be
used for topic classification of the documents identified by
the URIs. This is a similar approach to the one presented
here. But, the application to media types presents specific
requirements and challenges that are not discussed in the
field of topic classification.

The list of used classifier algorithms in focused crawlers
contains, among others, the application of: a simple naive
bayes classifier [Passerini ef al., 2001], a k-nearest neigh-
bour clustering algorithm [Ester et al., 2004], a support
vector machine [Sizov et al., 2002], a decision tree [Na-
jork and Wiener, 2001] [Li er al., 2005], a neural net-
work [Menczer et al., 2001] and also a solution with hid-
den markov models [Liu et al., 2004]. They all bear the
disadvantage of requiring a supervised approach, similar
to the classifier approach presented in this work. None of
the works from above considers an unsupervised learning
approach, neither they discuss the applicability of stream-
mining techniques. Further, none of these works discusses
media-type focused crawling.

7 Conclusion

Specialised search engines face major difficulties to dis-
cover and gather in a scalable and efficient way structured
content of requested media types on the Web. Niive solu-
tions such as gathering URISs via user submissions or crawl-
ing the entire Web (existing of 41 billion unique URIs with
over 80% of text /html documents) for the targeted files
do not guarantee a sufficient supply of URIs.

We investigated the problems of specialised search en-
gines in discovering and gathering relevant documents
from the Web. We first showed that classification ap-
proaches are suited in principle. Afterwards, we proposed
an approach for scalable and optimised focused crawling
that discovers URIs of targeted media types and extracts
meta data in a structured format from the downloaded con-
tent. We were able to show that data mining techniques
are well suited for implementing fast and scalable focused
crawling. However, the choice of applied technique is a
rather crucial one. Even if static classifier approaches work
well and achieve good performance and accuracy, there is
still great potential to increase both. We are eager to inte-
grate and evaluate the pattern mining approach developed
for data streams in order to judge on its applicability. We
hope that we can increase performance and accuracy by this



even more — while being able to adapt to the usually strict
resource limitations that Web crawlers have to face.
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