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Abstract
With the widespread use of annotations in bi-
ological databases efficient models for statisti-
cal properties of set-valued attributes become in-
creasingly relevant. In this work we introduce
condensed random sets (CRS) as compact rep-
resentations of distributions over annotation sets.
The approach is discussed for both unorganized
term vocabularies and term hierarchies, applied
to an annotated yeast genome dataset and evalu-
ated in comparison to an alternative representa-
tion. Encouraged by the results of the evaluation
we explore further applications by pointing out
how the representation can be used to support the
construction of new semantic similarity measures
for information retrieval.

1 Introduction
Genome sequencing has become a widely used tool in mod-
ern biology. Yet, in higher organisms, genomic information
alone does not suffice to predict and characterize the man-
ner in which particular gene products affect metabolic and
signaling pathways, as it does not reflect the large number
of interactions in the cell. To obtain a better understand-
ing of biological processes the investigation of other lay-
ers of the cell machinery that are closer to the biological
function has recently drawn much attention, e.g. the reg-
ulatory mechanisms involving RNAs [Toledo-Arana et al.,
2009] (transcriptome) and eventually the resulting proteins
and their post-translational modifications themselves (pro-
teome).

Due to a combination of recent advances of experimen-
tal techniques and extensive efforts to systematically sur-
vey literature, biologists have succeeded in establishing cu-
rated collections of information concerning gene products
and their role for a number of model organisms. One of
the results of those efforts was the realization that the same
genes are frequently involved in several, sometimes seem-
ingly unrelated biological processes. That information has
been released to the public in the form of standardized pub-
lic databases in which gene identifiers are associated with
annotations terms describing their function. Using associ-
ated relational knowledge representations such as the Gene
Ontology, annotation terms can be organized and linked

with each other. In particular the Gene Ontology defines
a hierarchy of annotation terms thus allowing to specify
properties on different levels of detail.

In the present work we concern ourselves with the
enrichment of relational knowledge representations with
quantitative information extracted from annotated refer-
ence datasets. In particular we have investigated sets of
annotation terms on the biological processes linked to the
products of known genes. Observed statistical relation-
ships between those annotations, and between terms and
their generalizations were overlaid with term hierarchies
extracted from the Gene Ontology. The resulting data rep-
resentation can be used, e.g.:

1. To summarize and compare properties of datasets;

2. To compute likely expansions of coarse annotations to
a higher level of detail, e.g. when making predictions
from incomplete information or integrating data from
different measurements;

3. To improve semantic similarity measures by taking
into account empirically derived statistical relation-
ships between annotation terms.

In the following section we establish how datasets featur-
ing annotations with multiple terms can be modelled using
condensed random sets. Following that we extend that ap-
proach to integrate it with relational knowledge representa-
tions in the form of term hierarchies. Both variants of the
model are then applied to and evaluated on an annotated
dataset for the bakers and brewers yeast Saccharomyces
cerevisiae, which has been extensively studied as a eukary-
otic model organism (Section 4). The results are compared
to a representation based on an independent modelling of
annotation terms. Finally Section 5 explores the prospect
of applying the modeled term-set distributions for the con-
struction of new context-specific semantic similarity mea-
sures.

2 Condensed Random Sets
Due to their relative flexibility and extensibility annotations
have become a popular way to enrich existing data. Unlike
conventional attributes that may only take one value out
of a fixed domain, the same data-object may be simultane-
ously annotated with several terms that together describe a
property. Denoting the set of potentially admissible anno-
tation terms as Ω, annotations instantiate a set-valued at-



tribute A∗ that takes values from the set 2Ω formed by the
subsets of Ω. Apart from the simple list of associated terms,
that very information may yield other interesting findings.
For the annotated yeast genome, for example, it allows to
investigate whether the activity of a gene is specific to a
biological process or not. Conversely, when analysing ex-
pression data, the interpretation of the process annotations
yields lists of candidates for pathways or functions that
are affected by targeted interventions. Applied to whole
genomes, the focus shifts from individual sets to frequency
distributions over sets. From these distributions, one can
obtain a quantitative characterization, for instance, of the
level of complexity (fraction of genome involved) and rel-
ative importance (fraction of specialized genes/proteins) of
biological processes in the organisms of interest.

In the probabilistic framework such a distribution over
the possible annotation sets gives rise to a Random Set
[Nguyen, 1978]. The two characteristics suggested as com-
plexity and specificity assessments respectively correspond
to the one-point coverage and the single-element probabil-
ities of the random set, with a distribution p∗ specifying
the probability of each individual annotation-term combi-
nation. Since the number of combinations grows expo-
nentially with the number of admissible annotation terms,
however, a direct representation strategy allows for a very
limited choice of annotation terms only. Even if all val-
ues can be represented in memory, providing estimates for
a large number of – in most cases very small – probabili-
ties with acceptable precision would require unrealistically
large samples [Wasserman, 2006].

Fortunately, many applications do not require represen-
tations with detailed probability values for all set-valued
outcomes. Due to their role in interpretations probabilities
of singletons and the probability of term coverage by set-
valued annotations provide useful information summaries.
By focusing on these pieces of information the condensed
random sets achieve a compact representation of statistical
information regarding set attributes.

The condensed random set approach [Rügheimer, 2007],
builds on a partitioning of the set of the subsets of a sample
space Ω and a mapping of set-distributions to a probabil-
ity/possibility distribution over the condensed domains. In
the formalization of that approach a special attribute value
is introduced to label outcomes that are multi-valued w.r.t.
a frame of discernment Ω or correspond to the empty set.
For simplicity, the representation is initially discussed for
the case of an unstructured repository of annotation terms.

Definition 1 Let Ω be a set of distinct labels. Furthermore
let ω� be a special symbol uniquely associated with and not
already contained in Ω. Consider a mapping σ from the set
of subsets 2Ω to the extended set universe Ω ∪ {ω�}

σ : 2Ω → Ω ∪ {ω�}

∀S ⊆ Ω : σ(S) =

{
ω if S = {ω}, ω ∈ Ω,

ω� otherwise.

(1)

We call σ the set reduction mapping w.r.t. Ω.

It is easily seen that σ preserves the distinction between
singleton elements of 2Ω, but collects the multi-valued out-
comes in a separate class. Consider now a set of objects
or cases O and their description via a set-valued attribute
A∗ taking values from 2Ω. Using the definition of the set
reduction mapping, it is possible to define a condensed set-
valued attribute A� that is linked to the values of A∗:

Definition 2 Let A∗ be a set-valued attribute A∗ : O →
2Ω. Additionally let σ : 2Ω → Ω ∪ {ω�} denote the set
reduction mapping w.r.t. Ω. The condensed set-valued at-
tribute A� induced by A∗ is a mapping:

A� : O → Ω ∪ {ω�}
∀o ∈ O : o 7→ σ(A∗(o)).

(2)

The relation between the attribute domain conveyed by
the set reduction mapping is illustrated in Figure 1. The
underlying term set Ω is referred to as the basic domain
of the condensed set-valued attribute A� (written Ω =
bdom(A�)).

ω1 ω2 ω3 ω� ω1 ω2 ω3

{ω1} {ω2} {ω3} {ω1, ω2} {ω1, ω3} {ω2, ω3}{ω1, ω2, ω3} ∅

? ? ? ?

dom(A∗) = 2Ω︷ ︸︸ ︷

︸ ︷︷ ︸
dom(A�) = Ω ∪ {ω�}

︸ ︷︷ ︸
bdom(A�) = Ω

Figure 1: Domains of a set-valued attribute A∗, the induced
condensed set-valued attribute A� and underlying basic do-
main Ω. Arrows indicate the set reduction mapping w.r.t Ω.
Shaded elements of dom(A∗) mark multi-valued outcomes
covering ω2.

Per Definition 2 the values of A� depend directly on the
values of A∗. Consequently a probability distribution p∗

over dom(A∗) induces a probability distribution p� over
dom(A�), which summarizes p∗.

p�(ω) = P ∗({S:σ(S) = ω})
= P ∗(σ−1(ω))

=


p∗({ω}) if ω ∈ bdom(A�),∑
S∈dom(A∗)

|S|6=1

p∗(S) if ω = ω�.

(3)

It is important to realize that for any element ω ∈
bdom(A�), the value p�(ω) refers to the probability of ω
being the only element in an annotation list, rather that just
being one of them. The probability mass originally associ-
ated with multi-valued outcomes S:S ∈ dom(A∗), |S| >
1 or with the empty-set outcome is assigned to a surrogate
attribute value ω� in the condensed probability distribution.
This approach has two immediate benefits: Since p� is still
a probability distribution, well established operations of the
probabilistic framework like conditioning and marginaliza-
tion can be employed with this representation. In addition
to that, Definition 2 can be applied to estimate the con-
densed probability distributions directly from data, that is
without prior computation of the distribution p∗.

Since they represent the non-ambiguous cases, single-
ton annotations are enriched in many real-world datasets.
In the biological application considered here 56.9% of all
genes are annotated with just one term. Should all an-
notations consist of a single term (no ambiguity) the rep-
resentation is equivalent to a probability distribution over
dom(A) = bdom(A�) = Ω as p�(ω) = p(ω) and
p�(ω�) = 0 hold for that case. To support the reconstruc-
tion of one-point coverages, however, a richer represen-
tation is required. Given a probability distribution p∗ for



a set-valued attribute A∗ taking values from 2Ω, the one-
point coverage of individual elements ω ∈ Ω is computed
as follows:

∀ω ∈ Ω : opc(ω) = P ∗(S : S ⊆ Ω ∧ ω ∈ S)

=
∑

S⊆Ω
ω∈S

p∗(S).
(4)

For each ω ∈ Ω one element of the sum in the right-
hand expression of Equation 4 is obtained directly from the
distribution p� of the induced condensed attribute A�. For
S = {ω} the summand is recovered due to the equality
p∗(S) = p∗({ω}) = p�(ω). To represent the contribution
from all other subsets of Ω, the latter are encoded as pro-
portions relative to p�(ω�) (called coverage factors):

Definition 3 Let p∗ denote a distribution linked to a set-
valued attribute (A∗) over 2Ω and p� the distribution over
the domain dom(A�) of an induced condensed set-valued
attribute A� obtained by applying equation 3. Then the
coverage function c� relative to multi-valued outcomes of
A∗ is defined as a function

c� : Ω → [0, 1]

ω 7→


∑

S⊆Ω,ω∈S,
|S|>1

p∗(S)

p�(ω�) if p�(ω�) > 0,

1 otherwise.

(5)

For p�(ω�) the value c�(ω) denotes the conditional prob-
ability for ω being contained in a non-singleton outcome.
Although the contributions to the one-point coverage could
have been stored directly, the representation via relative
coverage factors was chosen to better support probabilistic
conditioning and marginalization operations. In the case
p�(ω�) = 0, the conditional coverage factors are unde-
fined, but can be set to a constant. Alternatively the prob-
lem can be avoided altogether by using a Laplace correc-
tion.

Like the distribution p�, the relative coverage factors as-
signed by c� can be computed directly from data. Replac-
ing the sum in Equation 4 the one-point coverage may now
be rewritten as

∀ω ∈ Ω : opc(ω) =
∑

S⊆Ω
ω∈S

p∗(S)

= p�(ω) + p�(ω�) · c�(ω)
(6)

In the following, the term condensed distribution is un-
derstood to refer to a tuple (p�, c�) that is formed by a con-
densed probability distribution and the corresponding cov-
erage function.

The advantage of the condensed set-valued attribute A�

and the function p� and c� as compared to the full random
set representation is the reduction of the number of param-
eters. For each term of the attribute domain only the prob-
ability for the singleton outcome and the coverage factor
need to be stored. For practical reasons, it is also advanta-
geous to explicitly represent the combined probability mass
of all multi-valued outcomes, which is required for the cal-
culation of every one-point coverage. This raises the total
number of model parameters to 2|Ω| + 1. With the con-
densed random sets the number of distribution parameters
grows linearly in the size of the underlying base domain
Ω. In contrast, a full distribution over sets would have to
encode the probabilities of 2|Ω| possible instantiations.

3 Application to Term Hierarchies
So far the individual annotation terms were considered
as largely unrelated. In practise, however, terms are fre-
quently organized in a hierarchy. For several application
fields such term hierarchies are specified as part of an on-
tology. We refer to such term relations using the func-
tions parentH /childrenH to denote a terms direct prede-
cessors/descendants in the hierarchy and more generally
ancH /descH for compatible terms of different specificity.
The hierarchical term structure acknowledges that annota-

a1 a2 a3

a11 a12 a13 a31 a32
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Figure 2: Attribute Value Hierarchy Example

tions may originate from different sources and provide in-
formation on distinct levels of detail. This means that it
is no longer sufficient to trace which terms or labels have
been used in an annotations itself, but also to consider other
applicable terms that are implied. For example, in the hi-
erarchy depicted in Figure 2 the term a1 is a generalization
of a12. Therefore, whenever a12 applies to a situation, so
does a1. In contrast, if a case is labeled only as a1 we do not
know which of the more specific labels a11, a12, a13 apply
(Figure 2). However, the probability of different refinement
alternatives may be estimated by looking at the conditional
distributions for term usage in fine grained annotations in
reference data or simply the remainder of the dataset.

3.1 Model Construction

{a11} {a12} {a13} {a11, a12} {a11, a13} {a12, a13}{a11, a12, a13}

{a1}

Figure 3: Possible Refinements of Label a1 in the Hierar-
chy from Figure 2

A general approach to use the condensed random set
framework to deal with to such hierarchies has been de-
scribed in [Rügheimer and Kruse, 2008]. Each branch in
the term hierarchy H is associated with a condensed ran-
dom set that models the empirical distributions of the possi-
ble expanded annotations in reference data. The combined
set of labels in the term hierarchy is denoted by L.

The above representation strategy presumes that the ex-
panded annotations w.r.t. different parent labels are (sta-
tistically) independent of one another given those parents
in the hierarchy. Applied to all expandable labels of the
hierarchy, this leads to the data structure depicted in Fig-
ure 4. For each non-leaf label λr an additional label λ�r is
introduced. In the condensed representation the conditional
probability assigned to that label refers to the event that the
label λr is split into more than one applicable child labels
during the next refinement step. This is complemented with
conditional coverage factors, which are stored for each el-
ement in the direct refinement of λr.

To estimate the model parameters from empirical data
the Equations 3 and 5 are applied to the branch distribu-
tions of non-leaf labels λr. The respective reference set is
formed by those observations, for which λr is both appli-
cable and has been expanded on the observed frame. In
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Figure 4: Extended attribute value hierarchy as data structure for the condensed representation of distributions over multi-
valued instantiations (conditional probabilities and coverage factors indicated by solid and dotted arrows respectively)

that case information on the applicability of the individual
child labels of λr is available too. An algorithm to calcu-
late the branch distributions for a given label hierarchy H
is given below (Figure 5). For each instantiation from the
training data, all compatible nodes in the term hierarchy
are marked. Following that, affected branch distributions
are traversed to update counters for element coverage (in
the case of a multi-label instantiation) or for the occurrence
of the respective singleton. Counter updates for the first
label in each instantiation are delayed until a distinction
of single- and multi- label instantiations becomes possible.
After all instantiations have been processed the condensed
distribution function and coverage functions are calculated.

The branch distribution on the originally set-valued se-
lections of applicable labels from the elementary refine-
ment of λr is represented using the condensed distribu-
tion p�H,λr

, with the new element λ�r representing the non-
singleton annotation sets, and the associated coverage func-
tion c�H,λr

. The lcorr parameter denotes a user-defined con-
stant for an optional Laplace correction, which is applied
for both the induction of branch probabilities and condi-
tional coverage factors (the latter being instances of a two
class problem). The bounding of the normalization fac-
tors ensures that all marginal probabilities will be defined,
even if the Laplace correction is not applied. This guar-
antee does not extend to conditional branch probabilities
though. By altering the normalization factors the algorithm
is easily adapted to alternative interpretations of the non-
expanded values in the training data set.

3.2 Recalling Information
To facilitate the use of the above representation to model
distributions, let us now address how stored information
is accessed. To recover a set-distribution from an exist-
ing model, the conditional branch distributions on the hi-
erarchy are recombined into respective distributions on the
frames. For singleton outcomes this amounts to multiply-
ing branch probabilities along a path of label refinement,
i.e. ∀λ ∈ L :

p∗′H({λ}) =
∏

λ′∈({λ}∪ancH(λ))\λ0

p�H,parentH(λ′)(λ
′). (7)

In general the approximation will be imperfect. In addi-
tion to the unavoidable sampling error, the branch distribu-
tions do not distinguish between real singletons and cases
where a label is merely the only applicable element in the
local branch. Provided sufficient training data is available,

Figure 5: Calculation of Condensed Branch Distributions
from Data



a higher precision can be obtained by adding a separate set
of branch distributions though.

The one point coverages of individual labels are retrieved
by recursively accumulating conditional probabilities and
coverage factors for each elementary refinement leading to
the label in question. For a single recursion step the re-
constructed one-point coverage of a given label is obtained
by application of Equation 6. Because each branch distri-
bution refers only to those cases where the respective an-
cestor labels are applicable, the result is than multiplied
with the respective one-point coverage for the ancestors:
∀λ ∈ L 6= λ0, λr

def= parentH(λ) :

opc′H(λ) = opc′H(λr) ·
(
p�H,λr

(λ)

+ p�H,λr
(λ�r) · cH,λr (λ)

)
,

(8)

where λr is used as a shorthand notation for the parent
label of λ in the hierarchy and λ�r the corresponding sur-
rogate label that indicates multiple applicable elements in
the extension of λr. For each level in the hierarchy an addi-
tional factor is supplied until the root label λ0 is reached. If
the empty annotation sets are excluded the one-point cov-
erage of that label is always one1. To efficiently compute
one-point coverages for several elements of a frame an im-
plementation would reuse partial results whenever the re-
cursion runs over shared ancestors in the hierarchy. Under
the assumption that applicability of the individual labels
within an elementary refinement is independent for non-
singleton instantiations, the one-point coverages can also
be used to approximate probability values for annotations
sets with more than one term, though the approximation
quality is lower than for the singletons.

Finally case-specific information on one-point coverages
and probabilities can be integrated to allow reasoning. This
is achieved by temporarily fixing conditional branch distri-
butions to externally supplied inputs. In the next step the
distributions on the target frames are recomputed with the
provided values taking precedence over those supplied by
the model. Recursions are broken early whenever one of
the externally provided values is encountered and only the
missing conditional branch probabilities are supplemented
by the model.

4 Experimental Evaluation
The evaluation has been conducted on an annotated
genome dataset released to the public via the Saccha-
romyces Genome Database project [SGD Curators, a]. The
SGD-project maintains a curated database that summarizes
published results about the function of the genes and gene
products of the baker’s and brewer’s yeast Saccharomyces
cerevisiae, as well as their respective roles in biological
processes and their intracellular activity sites. Annota-
tion follows a domain-wide standard defined in the gene-
ontology [The Gene Ontology Consortium, 2000]. The lat-
ter also defines term relations that allow to link annotations
on different levels of specificity to each other. The terms
are organized into three non-overlapping term hierarchies
for the tree aspects of annotation (processes, functions, cel-
lular component). Each of these term hierarchies forms

1Otherwise, empty instantiations can easily be represented by
inserting a “virtual” root label with an unnormalized branch dis-
tribution at the top of the hierarchy. In that case, the one point
coverage of the original root label is computed using Equation 8,
whereas the one-point coverage of the new root label is set to one.

a separate branch of the ontology and is connected to the
other two only via the common root node.

Since the full annotation is very detailed, a considerable
fraction of the annotation terms is only applied to a very
small subset of the database. Due to their extremely low
term coverage it is not well-justified to include them into a
statistical analysis. To provide a standardized broader view
of the represented knowledge, less specific versions of the
ontology have been released by the consortium. These so-
called “slim ontologies” define species-specific subsets of
comparatively general Gene Ontology terms and are usu-
ally released together with the full annotation data collected
in coordinated efforts to analyze the genome and proteome
of selected model organisms. The dataset used in the exper-
iments was based on a projection of the full SGD annota-
tions to a subset of relatively broad gene-ontology terms –
the GO-Slim terms for yeast [SGD Curators, b]. Term that
were not included in the in the slim version of the ontology
were mapped to their most specific hierarchical ancestor in
the reduced term set. Both that mapping and the GO-Slim
itself are maintained at the SGD website.

To evaluate the proposed framework, test its underlying
assumptions and compare its predictions with those of al-
ternative frameworks, we implemented three different ap-
proaches:
• A model in which presence or absence of elements in a

set are encoded using binary variables. The latter vari-
ables are treated as independent, so the distribution
of set-instantiations is obtained as a product of binary
distributions for the state of the elements of the under-
lying carrier set. The set-distribution is described via
its one-point-coverage.

• A condensed distribution model using an unstructured
attribute domain

• An enriched term hierarchy using condensed random
sets for the representation of branch distribution (de-
scribed in Section 3).

For the experiment all models were trained using the dis-
tribution of annotation sets from a randomly sampled sub-
sets of the yeast genome. The resulting distribution models
were then compared with the distribution of the annotation
term combinations on the remaining genes. To that end ap-
proximation quality and generalization were evaluated us-
ing several measures that emphasize either overall quality
of fit, the representation of singleton outcomes or the pre-
diction of element coverage. To increase robustness of that
evaluation against sampling effects a cross-validation strat-
egy was employed for all experiments.

4.1 Data Preparation and Experimental Setup
Due to the structure of the SGD projects internal database,
each assignment of an annotation term to a gene is repre-
sented as separate database record. Apart form the gene
name and annotation term these records contain supple-
mentary information, such as alternative gene names, the
annotation aspect class, types of information sources used
to assign the annotation, references to the location of the
gene within the genome or connected publications.

Historically several genes have been described and
named by two or more research group independently. Of-
ten these groups investigated seemingly unrelated biologi-
cal functions in different organisms. Only later, when re-
fined sequencing and sequence comparison techniques al-
lowed to locate genes within a genome and identify ho-
mologue genes in different species, these discoveries have



been found to refer to identical or analogous objects. As a
result several genes are known by more than just one name.
In order ensure that annotations can be attributed correctly,
the first step of preprocessing consisted in mapping all al-
ternative gene names to unique standard identifiers which
are used throughout all subsequent processes.

Following that, the records where filtered w.r.t. the anno-
tation aspect given. For the purpose of this evaluation the
annotation w.r.t. the “biological process” aspect was cho-
sen. In comparison to the other annotation classes, the an-
notations on the biological processes provide a compara-
tively reliable and extensive higher-level description of the
role of the gene product in the organism. In the remaining
part of the database, annotations for individual genes are
still spread over several database records. To better support
a gene-based view on the data annotations where grouped
by the genes they refer to. The resulting file summarizes
the known biological function for each of 6849 genes us-
ing 909 distinct annotation sets.

In parallel, the preprocessing routines assembled infor-
mation about the annotation scheme employed. To that end
the term hierarchy structure was extracted from the ontol-
ogy and converted them into a domain specification for the
hierarchical version of the condensed distribution models.
Similar domain specifications were prepared for the non-
hierarchical version and for the model based on indepen-
dent binary variables. In those cases however the domain
specifications were limited to a list of annotation terms, that
is the information on term organization was disregarded.
The generated domain specifications were later used to pre-
configure distribution models in the training phase.

The above preprocessing method resulted in a database
of annotation sets for 6849 genes. To study the proper-
ties of the model types this set was split into five partitions
with genes randomly assigned (4 partition with 1370 genes
each and one partition with 1369 genes). To limit sam-
pling effects, the evaluation measures were computed in a
5-fold cross-validation process [Kohavi, 1995] with a dif-
ferent partition serving as a test data set and the remaining
partitions providing training data in each run.

4.2 Parameter Estimation
Using the model configuration files prepared in the prepro-
cessing step and the training data for each validation run,
the different model types were trained for the distribution
of gene annotation sets. In the case of the reference model
with independent binary variables the parameter set con-
sists of one value per element in the carrier set, which de-
scribes the probability of an instantiation containing that
very element. The modeled probability P̂ (S) of any set-
instantiation S ⊆ Ω is obtained by computing the products

P̂ (S) =

(∏
ω∈S

opc(ω)

)
·

 ∏
ω∈Ω\S

(1− opc(ω))

 , (9)

with the model parameters opc(ω) denoting the (estimated)
probability of the element ω being an element of the real-
ization. Coverage rates for elements in the carrier set are
estimated from the frequencies of the two possible out-
comes “element is present in the instantiation” and “ele-
ment is absent in the instantiation”.

For the condensed distribution and hierarchy-based con-
densed distribution model the parameters are singleton
probabilities and conditional coverage factors either for the
distribution as a whole, or – in the hierarchical version –

for subtrees of the label hierarchy. For a detailed descrip-
tion of parameters and the model induction procedures see
Sections 2 and 3 respectively. In all cases, the parameters
were estimated from the observed frequencies in the train-
ing data with a Laplace correction of 0.5 applied.

4.3 Evaluation Measures
Having discussed the different model classes, their training
and the general evaluation method, we shall now investi-
gate the evaluation measures employed for this task. The
measures where chosen to provide complementary infor-
mation on how well different aspects of the set-distribution
are captured by each model type.

Log-Likelihood To describe those measures it is as-
sumed that all models are evaluated against a test data set
Dtst = (d1, d2, . . . , dm) with each di formed by the set of
annotations applicable to one particular gene. A common
way to evaluate the fit of a probability-based model M is
to consider the likelihood of the observed test data Dtst un-
der the model, that is, the conditional probability estimate
P̂ (Dtst | M). The closer the agreement between test data
and model, the higher that likelihood will be. The likeli-
hood is also useful to test model generalization, as models
that overfit the training data tend to predict low likelihoods
for test datasets drawn from the same background distribu-
tion as the training data. To circumvent technical limita-
tions concerning the representation of and operations with
small numbers in the computer, the actual measure used in
practice is based on the logarithm of the likelihood:

log L(Dtst) = log
∏

d∈Dtst

P (d | M) (10)

=
∑

d∈Dtst

log P (d | M). (11)

In that formula the particular term used to estimate the
probabilities P (d | M) of the records in D are model-
dependent. Since the likelihood takes values form [0, 1] the
values for the log-transformed measure are from (−∞, 0]
with larger values (closer to 0) indicating better fit. The
idea of the measure is that the individual cases (genes) in
both the training and the test set are considered as inde-
pendently sampled instantiations of a multi-valued random
variable drawn from the same distribution. The Likeli-
hood of a particular test database of size m is computed
as the product of the likelihoods of its m records. Due to
the low likelihood of individual sample realizations even
for good model approximation, the Log-Likelihood is al-
most always implemented using the formula given in Equa-
tion 11, which yields intermediate results within the bounds
of standard floating point format number representations.

One particular difficulty connected with the Log-
Likelihood, resides in the treatment of previously unob-
served cases in the test data set. If such values are assigned
a likelihood of zero by the model then this assignment en-
tails that the whole database is considered as impossible
and the Log-Likelihood becomes undefined. In the experi-
ment this undesired behavior was countered by applying a
Laplace correction of lcorr = 0.5 during the training phase.
This modification ensures that all conceivable events that
have not been covered in the training data are modeled with
a small non-zero probability estimate and allow the result-
ing measures to discriminate between databases containing
such records.



Average Record Log-Likelihood: The main idea of the
log-likelihoods measure is to separately evaluate the likeli-
hood of each record in the test database with respect to the
model and consider the database construction process a se-
quence of a finite number of independent trials. As a result
log-likelihoods obtained on test databases of different sizes
are difficult to compare. By correcting for the size of the
test database one obtains an average record log-likelihood
as a more suitable measure:

arLL(Dtst) =
log L(Dtst)
|Dtst|

(12)

Note that in the untransformed domain the mean of the
log-likelihoods corresponds to the geometric mean of the
likelihoods, and is thus consistent with the construction of
the measure from a product of evaluations of independently
generated instantiations.

Singleton and Coverage Rate Errors: In addition to the
overall fit between model and data, it is desirable to char-
acterize how well particular properties of a set-distribution
are represented. In particular it has been pointed out that
the condensed distribution emphasizes the approximation
of both singleton probabilities and the values of the element
coverage. To assess the quality of the approximations from
an application-oriented viewpoint and compare it to results
achieved using other methods, two additional measures –
dsglt and dcov – have been employed. These measures are
based on the sum of squared errors for the respective values
over all elements of the base domain:

dsglt =
∑
ω∈Ω

(p′(ω)− p(ω))2 , (13)

dcov =
∑
ω∈Ω

(opc′(ω)− opc(ω))2 . (14)

4.4 Experimental Results
For increased robustness of the results the evaluation was
conducted using 5-fold cross-validation. In each of the five
runs the models were trained using a Laplace correction of
0.5. To obtain a basis for the assessment and comparison
of the different methods, the evaluation results of the indi-
vidual runs were collected and – with the exception of the
logL measure2 – averaged. These results are summarized
in the Tables 1–3.

log L arLL dsglt dcov

-9039.60 -6.60 0.067856 0.001324
-8957.19 -6.54 0.064273 0.001524
-9132.09 -6.67 0.060619 0.001851
-8935.82 -6.52 0.074337 0.001906
-9193.44 -6.72 0.059949 0.001321

-6.61 0.065406 0.001585

Table 1: Evaluation Results for Model Using Independent
Binary Variables (One-Point-Coverage) with Laplace Cor-
rection of 0.5

As anticipated the two condensed random set-based
models achieve a considerably better fit to the test data
(higher value of arLL-measure) than the model assuming

2See the discussion on the arLL measure to review the argu-
ment why averaging Log-Likelihoods is not meaningful here

log L arLL dsglt dcov

-7629.66 -5.57 0.000539 0.008293
-7559.38 -5.52 0.000457 0.011652
-7752.21 -5.66 0.000857 0.006998
-7529.83 -5.50 0.001014 0.004767
-7828.44 -5.72 0.000567 0.009961

-5.59 0.000686 0.008334

Table 2: Evaluation Results for Condensed Distribution on
Hierarchically Structured Domain with Laplace Correction
of 0.5

log L arLL dsglt dcov

-7992.76 -5.83 0.000241 0.001342
-7885.19 -5.76 0.000222 0.001531
-8045.31 -5.87 0.000411 0.001838
-7839.16 -5.72 0.000612 0.001895
-8195.49 -5.99 0.000268 0.001316

-5.83 0.00035 0.001584

Table 3: Evaluation Results for Condensed Distribution on
Unstructured Domain with Laplace Correction of 0.5

independence of term coverages. Among the two CRS-
based models the variant that uses the term hierarchy struc-
ture clearly benefits from this additional information and
consistently yields better results than its competitor. The
large error obtained for the prediction of singleton annota-
tions in the model based on independent binary variables,
points out the inadequacy of the independence assumption
in the latter representation. In contrast, with their sepa-
rate representation of singleton annotation sets, the CRS-
based models show only small prediction errors for the sin-
gleton frequencies, though the incomplete separations be-
tween real singletons and single elements in local branch
distributions appears to leads to a slightly increased error
for the hierarchical version. This is consistent with the
higher error dcov of that model in the prediction of cov-
erage factors. The two non-hierarchical models represent
one-point coverages directly and therefore achieve identi-
cal prediction error3.

5 Relevance for Semantic Similarity
Measures

Measures of semantic similarity between concepts have
been successfully applied in linguistics, where they are
used in Word Sense Disambiguation [Patwardhan et al.,
2003], and in bioinformatics, where they are used to in con-
nection with annotation databases to evaluate or enhance
clustering or classification algorithms. The Gene Ontology
[The Gene Ontology Consortium, 2000] has been devel-
oped with the aim of supporting users in using their bio-
logical background knowledge to find information in bio-
logical databases. But to actually retrieve the desired in-
formation it is necessary to relate the users query to stored
pieces of information (e.g. documents). The majority of
current search engines try to interpret the meaning of the
query based on the keywords contained in it. The system
uses these keywords to rank results by their degree of sim-
ilarity to the applied query as defined by a similarity mea-
sure. If the keywords are well chosen, these methods fre-

3The minor differences between the tables are merely artifacts
of the two-factor decomposition of coverage factor in the con-
densed distribution.



quently provide an appropriate list of results. However, if
the search terms are ambiguous or are used in different do-
mains, then a rather inhomogeneous collection of results is
returned. As this is the case for a considerable number of
queries retrieval performance can be improved by applying
automatic categorization / filtering techniques to separate
those cases. In the biocomputing and the biomedical field
semantic similarity measures have been employed to im-
prove document retrieval [Lord et al., 2003], [Pedersen et
al., 2007].

Whereas earlier semantic similarity measures were
based on graph distance in a term hierarchy some of the
more recent variants rely on measures of statistical inter-
action between pairs of terms [Lin, 1998] and context vec-
tors, which essentially compare relative term coverage be-
tween the query and each semantic class [Patwardhan et
al., 2003]. In [De Luca, 2008], semantic prototype vectors
were constructed from a combination of observed data and
extensions acquired from ontological resources.

With condensed random sets it would be possible to ob-
tain a more accurate representation of the distribution of
annotation sets. Due to the additional parameters for mod-
elling single valued annotations a typically large fraction
of many real world datasets is represented with increased
precision. Moreover term interaction are implicitly con-
sidered in the hierarchical version of the model. Cur-
rently the likelihood measures used in Section 4 are be-
ing developed into normalized similarity measures. Al-
ready the likelihood based assessment of similarity allow
comparisons between groups of annotated objects as well
as between groups and individual annotation sets. It can
thus be applied both to compare clusters/groups (compar-
ison: distribution–distribution) and to solve classification
problems such as word sense disambiguation (comparison:
instantiation–distribution).

6 Conclusions
Condensed Random Sets allow to efficiently model proba-
bility distributions over annotation sets. Because the num-
ber of model parameters is linear in the cardinality of the
annotation term set, it can be applied to datasets that are
inaccessible to a full random set representation.

It was demonstrated that the assumptions made to
achieve this compact representation are in agreement with
properties of a relevant real-world biological dataset lead-
ing to a high approximation quality – when compared to a
reference approach with independent modeling of term an-
notations. At the same time the condensed representation
allows to reduce the problem of overfitting, which consti-
tutes another common problem with full random set repre-
sentations.

A hierarchical version allows to condition distributions
and to supplement information given on different levels
of detail. Although the example discussed in this paper
refers to a specific problem of biological data analysis, the
internal representation employed is general enough to be
applied to other random-set based knowledge models in a
large field of applications.
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